Atomic Structure [S]

1. Draw an atom of sodium, showing the locations and numbers of all of its constituent particles: [3]
2. Fill out the following table of the relative charges and masses of subatomic particles: [6]

	Relative Mass	Relative Charge
Proton		
Neutron		
Electron		

3. Write the electronic configurations of the following atoms and ions:
a. K [1]
b. Si [1]
c. N^{3-} [1]
d. $\mathrm{Mg}^{2+}[1]$
4. Lithium has two naturally occurring isotopes, lithium-6 and lithium-7.
a. Define the term isotopes: [3]
b. State and explain how the chemistry of these isotopes differs: [2]
c. Calculate the relative atomic mass of lithium given: [3]

Lithium-6 abundance $=7.5 \%$
Lithium-7 abundance $=92.5 \%$
d. Explain how both of these isotopes have the same atomic number:

Atomic Structure [S]

1. Draw an atom of sodium, showing the locations and numbers of all of its constituent particles: [3]

11 protons [1]
12 neutrons [1]

11 electrons arranged as 2:8:1 [1]
2. Fill out the following table of the relative charges and masses of subatomic particles: [6]

	Relative Mass	Relative Charge
Proton	1	$\mathbf{+ 1}$
Neutron	1	0
Electron	$1 / 1840$	$\mathbf{- 1}$

3. Write the electronic configurations of the following atoms and ions:
a. $\mathrm{K}[1]$

2:8:8:1
b. Si [1]

2:8:4
c. $\mathrm{N}^{3-}[1]$

2:8
d. $\mathrm{Mg}^{2+}[1] \quad$ 2:8
4. Lithium has two naturally occurring isotopes, lithium-6 and lithium-7.
a. Define the term isotopes: [3]
atoms with [1] same number of protons [1] but different number of neutrons[1]
b. State and explain how the chemistry of these isotopes differs: [2]
it doesn't [1]
because the number of electrons is the same [1]
c. Calculate the relative atomic mass of lithium given: [3]

Lithium-6 abundance $=7.5$ \%
Lithium-7 abundance $=92.5 \%$
$(0.075 * 6)+(0.925 * 7)=6.93$
[1] for each bracket
[1] for the answer to either 1 or 2 decimal places
d. Explain how both of these isotopes have the same atomic number:
[2]

Atomic number $=$ number of protons [1]

Number of protons is the same [1]

